

"Gh. Asachi" Technical University of Iasi, Romania

EFFECTS OF ORGANIC LOADING RATE ON PALM OIL MILL EFFLUENT TREATMENT IN AN UP-FLOW ANAEROBIC SLUDGE FIXED FILM BIOREACTOR

Ali Akbar Zinatizadeh Lorestani¹, Abdul Rahman Mohamed^{2*}, Mat Don Mashitah², Ahmad Zuhairi Abdullah², Mohamed Hasnain Isa³

¹Water and Environment Division, Water and Power Industry Institute for Applied and Scientific Higher Education, Kermanshah, Iran; ²School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia; ³School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

Abstract

The effect of OLR provided by hydraulic retention time (HRT) and influent chemical oxygen demand (COD_{in}) on the performance of an up-flow anaerobic sludge fixed film (UASFF) bioreactor treating palm oil mill effluent (POME) was studied. Anaerobic digestion of POME was modeled and analyzed with two variables i.e. HRT and COD_{in}. Experiments were conducted based on a general factorial design and analyzed using response surface methodology (RSM). The region of exploration for digestion of POME was taken as the area enclosed by HRT (1 to 6 days) and COD_{in} (5260 to 34725 mg/L) boundaries. Eight dependent parameters were either directly measured or calculated as response. These parameters were total COD (TCOD) removal, TCOD removal rate, volatile fatty acids to alkalinity ratio (VFA/Alk.), CO2 fraction in biogas, solid retention time (SRT), sludge retention factor (SRF), methane production rate per volume of the reactor and feed. A simultaneous increase of the variables determined a decrease of COD removal efficiency, SRT and SRF and an increase of COD removal rate, VFA/Alk., CO₂ fraction in biogas, methane production rate. The present study provides valuable information about interrelations of quality and process parameters at different values of the operating variables.

Keywords: anaerobic digestion, UASFF reactor, POME, HRT, COD_{in}, response surface methodology (RSM)

^{*} Author to whom all correspondence should be addressed: Phone: +604-599 6410, Fax: +604 – 594 1013, e-mail: chrahman@eng.usm.my